http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Expérimentales BIOF 1er BAC Sciences Mathématiques BIOF

Série N°4: TD-PRODUIT SCALAIRE DANS V2

Etude analytique -Applications : cercle

(La correction voir http://www.xriadiat.com)

Exercice1: Considérons le triangle ABC où A(2;1) B(5;0) et C(7;6).

- 1) a) Montrer que le triangle ABC est rectangle en B.
- b) En déduire les coordonnées du point Ω le centre du cercle circonscrit au triangle ABC
- 2) Déterminer les coordonnées du point G centre de gravité de ABC.
- 3) Déterminer les coordonnées du point H, orthocentre du triangle ABC.
- 4) Vérifier que les points Ω , G et H sont alignés

Exercice2: Considérons la parabole d'équation : $(P): y = x^2$ et la droite : (D): y = x - 1

- Tracer la droite (D) et la parabole (P).
- 2) Soit N_a un point d'abscisse α et varie sur la parabole (P)
- a) Déterminer en fonction de α la distance : $d(N_{\alpha}, (D))$
- b) Pour quelle valeur de α la distance $d(N_{\alpha},(D))$ est minimale.

Exercice3: Considérons deux vecteurs \vec{u} et \vec{v} non nuls et le trinôme $f(x) = (x\vec{u} + \vec{v})^2$

- 1) Développer f(x).
- 2) Déterminer le signe de f(x).
- 3) Déterminer le discriminant de f(x).
- 4) En déduire que pour tout vecteurs \vec{u} et \vec{v} on a : $\vec{u}.\vec{v} \le |\vec{u}.\vec{v}| \le |\vec{u}| \times |\vec{v}|$
- 5) Quand est ce qu'on a l'égalité ?

Exercice4: On sait que pour trois points donnés dans le plan on a : $MA + MB \ge AB$ le but de cette activité c'est de démontrer ce résultat.

Considérons deux vecteurs \vec{u} et \vec{v} non nuls.

- 1) Développer $(\bar{u} + \bar{v})^2$
- En utilisant l'inégalité précédente montrer que : || u + v || ≤ || u || + || v ||.
- 3) Quand est ce qu'on a l'égalité ?

Exercice5 : Déterminer les ensembles :

$$(E) = \{M(x,y) \in (P)/x^2 + y^2 - 2x + y + 1 = 0\}; (F) = \{M(x,y) \in (P)/x^2 + y^2 - x + 2y + 4 = 0\}$$

Exercice6: Soient les points A (-1,0), B (1,2) et C (5, -2)

- 1) Montrer que les points A, B et C ne sont pas alignés
- 2) Ecrire l'équation du cercle circonscrit au Triangle ABC.

Exercice7: Soit (C) le cercle d'équation : $x^2 + y^2 - 2x - 2y - 6 = 0$

- 1) Vérifier que le point A (3, -1) appartient au cercle
- 2) Ecrire l'équation de la tangente au cercle (\mathcal{C}) en A.

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

Exercice8: Soient le cercle :(C) : $(x-2)^2 + (y-1)^2 = 4$ et A (5,6)

- 1) Vérifier que le point A est à l'extérieur de (C)
- 2) a) Déterminer l'équation de la droite (δ) passante par A et parallèle à l'axe des ordonnées.
- b) Vérifier que (δ) n'est pas tangente à (\mathcal{C}) .
- 3) Soit (Δ) une droite qui passe par A et qui n'est pas parallèle à l'axe (Oy) et dont l'équation

réduite est : (Δ) : y = mx + p

- a) Déterminer l'équation de (Δ) en fonction de m uniquement.
- b) Déterminer m pour que (Δ) soit tangente au Cercle (C).
- 4) Soit B (4,5)
- a) Montrer que la droite passante par B et parallèle à l'axe des ordonnées est tangente au cercle (C).
- b) Soit (Δ') une droite qui passe par A et qui n'est pas parallèle à l'axe (Oy) et dont l'équation réduite

est : (Δ') : y = mx + p; Déterminer m pour que (Δ) soit tangente au cercle (C).

Exercice9: Résoudre graphiquement : $(x^2+y^2-4x-6y+9)(2x-y+1) \le 0$

Exercice10: Le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}(O;i,j)$ orthonormé. (C_m) L'ensemble des

points M(x;y) du plan tel que : (C_m) : $x^2 + y^2 - 2mx + 4my + 4m^2 - 1 = 0$ où m est un réel.

- 1) Montrer que pour tout m dans \mathbb{R} , l'ensemble (C_m) est un cercle et déterminer ses éléments.
- 2) Déterminer l'équation cartésienne du plus petit cercle (C_m) .
- 3) Déterminer l'ensemble dans lequel varient les centres $\,\Omega_{m}\,$ quand m décrit $\mathbb{R}\,$
- 4) a) Déterminer pour quelles valeurs de m le point A (-1,2) appartient-il à (C_m)
- b) Soit $M_0(x_0; y_0)$ un point donné dans le plan, existent-ils toujours des réels m

Qui vérifient $M_0 \in (C_m)$

5) Déterminer s'il existe l'intersection de tous les cercles (C_m)

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

2